53 research outputs found

    Directional Phonon Suppression Function as a Tool for the Identification of Ultralow Thermal Conductivity Materials

    Full text link
    Boundary-engineering in nanostructures has the potential to dramatically impact the development of materials for high-efficiency conversion of thermal energy directly into electricity. In particular, nanostructuring of semiconductors can lead to strong suppression of heat transport with little degradation of electrical conductivity. Although this combination of material properties is promising for thermoelectric materials, it remains largely unexplored. In this work, we introduce a novel concept, the directional phonon suppression function, to unravel boundary-dominated heat transport in unprecedented detail. Using a combination of density functional theory and the Boltzmann transport equation, we compute this quantity for nanoporous silicon materials. We first compute the thermal conductivity for the case with aligned circular pores, confirming a significant thermal transport degradation with respect to the bulk. Then, by analyzing the information on the directionality of phonon suppression in this system, we identify a new structure of rectangular pores with the same porosity that enables a four-fold decrease in thermal transport with respect to the circular pores. Our results illustrate the utility of the directional phonon suppression function, enabling new avenues for systematic thermal conductivity minimization and potentially accelerating the engineering of next-generation thermoelectric devices

    Ferroelectricity in ultra-thin perovskite films

    Full text link
    We report studies of ferroelectricity in ultra-thin perovskite films with realistic electrodes. The results reveal stable ferroelectric states in thin films less than 10 \AA thick with polarization normal to the surface. Under short-circuit boundary conditions, the screening effect of realistic electrodes and the influence of real metal/oxide interfaces on thin film polarization are investigated. Our studies indicate that metallic screening from the electrodes is affected by the difference in work functions at oxide surfaces. We demonstrate this effect in ferroelectric PbTiO3_3 and BaTiO3_3 films.Comment: 4 pages in REVTEX4, 4 epsf figure

    Growth and interfacial properties of epitaxial oxides on semiconductors: ab initio insights

    Get PDF
    Crystalline metal oxides display a large number of physical functionalities such as ferroelectricity, magnetism, superconductivity, and Mott transitions. High quality heterostructures involving metal oxides and workhorse semiconductors such as silicon have the potential to open new directions in electronic device design that harness these degrees of freedom for computation or information storage. This review describes how first-principles theoretical modeling has informed current understanding of the growth mechanisms and resulting interfacial structures of crystalline, coherent, and epitaxial metal oxide thin films on semiconductors. Two overarching themes in this general area are addressed. First, the initial steps of oxide growth involve careful preparation of the semiconductor surface to guard against amorphous oxide formation and to create an ordered template for epitaxy. The methods by which this is achieved are reviewed, and possibilities for improving present processes to enable the epitaxial growth of a wider set of oxides are discussed. Second, once a heterointerface is created, the precise interfacial chemical composition and atomic structure is difficult to determine unambiguously from experiment or theory alone. The current understanding of the structure and properties of complex oxide/semiconductor heterostructures is reviewed, and the main challenges to prediction—namely, (i) are these heterostructures in thermodynamic equilibrium or kinetically trapped, and (ii) how do the interfaces modify or couple to the degrees of freedom in the oxide?—are explored in detail for two metal oxide thin films on silicon. Finally, an outlook of where theoretical efforts in this field may be headed in the near future is provided.National Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (Grant DMR-1119826)National Science Foundation (U.S.). (Yale University. Biomedical High Performance Computing Center. Grant CNS 08-21132

    Temperature-dependent thermal conductivity in silicon nanostructured materials studied by the Boltzmann transport equation

    Get PDF
    Nanostructured materials exhibit low thermal conductivity because of the additional scattering due to phonon-boundary interactions. As these interactions are highly sensitive to the mean free path (MFP) of phonons, MFP distributions in nanostructures can be dramatically distorted relative to bulk. Here we calculate the MFP distribution in periodic nanoporous Si for different temperatures, using the recently developed MFP-dependent Boltzmann transport equation. After analyzing the relative contribution of each phonon branch to thermal transport in nanoporous Si, we find that at room temperature optical phonons contribute 17% to heat transport, compared to 5% in bulk Si. Interestingly, we observe a constant thermal conductivity over the range 200 K < T < 300 K. We attribute this behavior to the ballistic transport of acoustic phonons with long intrinsic MFP and the temperature dependence of the heat capacity. Our findings, which are in qualitative agreement with the temperature trend of thermal conductivities measured in nanoporous Si-based systems, shed light on the origin of the reduction of thermal conductivity in nanostructured materials and demonstrate the necessity of multiscale heat transport engineering, in which the bulk material and geometry are optimized concurrently.United States. Dept. of Energy. Office of Science (Solid-State Solar-Thermal Energy Conversion Center Award DE-SC0001299)Deshpande Center for Technological Innovatio
    • …
    corecore